
Red-Black Trees

Kuan-Yu Chen (陳冠宇)

2020/10/26 @ TR-313, NTUST



2

Review

• Height for a node in a binary search tree 
– The height of the leaf node is 1

– The height of the internal node 
is 1 +max(ℎ𝐿, ℎ𝑅)

• AVL Trees
– Self-balancing binary search tree
– Balance Factor

• Every node has a balance factor 
of –1, 0, or 1

– Rotation is used to restore the
balance of the tree

𝒉 = 𝟑

𝒉 = 𝟐

𝒉 = 𝟏𝒉 = 𝟏

𝒉 = 𝟏



3

Red-Black Trees.

• A red-black tree is a self-balancing binary search tree that 
was invented in 1972 by Rudolf Bayer
– A special point to note about the red-black tree is that in this 

tree, no data is stored in the leaf nodes

• A red-black tree is a binary search tree
1. The color of a node is either red or black

2. The color of the root node is always black
3. All leaf nodes are black

4. Every red node has both the children colored in black
5. Every simple path from a given node to any of its leaf nodes 

has an equal number of black nodes



4

Red-Black Trees..

1. The color of a node is either red or black

2. The color of the root node is always black
3. All leaf nodes are black

4. Every red node has both the children colored in black

5. Every simple path from a given node to any of its leaf nodes 
has an equal number of black nodes

8



5

Red-Black Trees...

• Root is red

8



6

Red-Black Trees….

• A leaf node is red

8



7

Red-Black Trees…..

• Every red node does not have both the children colored in 
black

• Every simple path from a given node to any of its leaf nodes 
does not have equal number of black nodes

8



8

Searching in a Red-Black Tree

• Since red-black tree is a binary search tree, it can be searched 
using exactly the same algorithm as used to search an 
ordinary binary search tree!



9

Insertion in a Red-Black Tree

• In a binary search tree, we always add the new node as a leaf, 
while in a red-black tree, leaf nodes contain no data
– For a given data

1. Searching the correct position for the data

2. In the searching process, if there is a node with two red children

a) Perform color change algorithm

b) Check whether there are two consequent red nodes in the 
path

 If yes, do rotation!

3. Insert the data and set to a red node

4. Check whether there are two consequent red nodes in the path

a) If yes, do rotation!

5. Root should be black

Color Change → Rotation → Insert → Rotation → Check Root



10

Examples – 1.

• For a given red-black tree, please insert element 35

27

15 45

33 57

30 40

27

15 45

33 57

30 40

Color 

Change

27

15 45

33 57

30 40

Rotation

Color Change → Rotation → Insert → Rotation → Check Root



11

Examples – 1..

• For a given red-black tree, please insert element 35

27

15 45

33 57

30 40

Rotation

33

27 45

5730 4015

33

27 45

5730 4015

35

R

L

Color Change → Rotation → Insert → Rotation → Check Root



12

Examples – 2.

• For a given red-black tree, please insert element 38

33

27 45

5730 4015

35

33

27 45

5730 4015

35

Color 

Change

33

27 45

5730 4015

35

38

Color Change → Rotation → Insert → Rotation → Check Root



13

Examples – 2..

• For a given red-black tree, please insert element 38

33

27 45

5733 4015

35

38

Rotation

L

R

33

27 45

5733 3815

35 40

33

27 45

5733 3815

35 40

Color Change → Rotation → Insert → Rotation → Check Root



14

Examples – 3.

• Given 1, 2, 3, 4, 5 and 6, please construct a red-black tree

1 1

2

1

2

1

3

Rotation

R

R

3

2

1 3

2

1

4

Color 

Change

3

2

1

3

2

1

4

3

2

1
4

3

2

1

5

Color Change → Rotation → Insert → Rotation → Check Root

Insert 2 Insert 3 Insert 4

Insert 5



15

Examples – 3..

• Given 1, 2, 3, 4, 5 and 6, please construct a red-black tree

4

3

2

1

5

Rotation

5

4

2

1

3

Color 

Change

5

4

2

1

3

5

4

2

1

3

6

Color Change → Rotation → Insert → Rotation → Check Root

Insert 6

5

4

2

1

3



16

Compared with AVL Trees

• Red-black trees are efficient binary search trees, as they offer 
worst case time guarantee O(log n) for insertion, deletion, and 
search operations
– It is roughly a balanced binary search tree

• AVL trees also support O(log n) search, insertion, and 
deletion operations, but they are more rigidly balanced than 
red-black trees
– Thereby, AVL trees are slower insertion and removal but faster 

retrieval of data



17

Questions?

kychen@mail.ntust.edu.tw


